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ABSTRACT

A 20702

Feasibility of the "Dry Tape Battery" concept has been demonstrated
using the divalent silver oxide (Ag20z)-zinc couple with potassium
hydroxide electrolyte. Tapes coated with Ago0> have been discharged
efficiently (85%) at high current density (150 amp/ft2) against a
zinc block anode in a demonstration device. Methods of making and
activating Ag20> tapes have been devised. Tape speed, electrolyte
feed rate, and other operating parameters have been investigated

and evaluated as necessary for the design of a demonstration device.
Four such devices were constructed and delivered with sufficient tape
decks for several hours of operation.

Additional investigations carried on from 19 December to 23 January
1964 are reported in Appendix II.
7 i PP Adthon
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I. INTRODUCTION

A. OBJECTIVE

The major objective of this work was to demonstrate the feasibility
of the "dry tape" concept by constructing a breadboard device to

use experimentally coated tapes based on the AgQOZ/Zn couple. In
addition, the operating parameters of this experimental system were
to be determined so that reasonable extrapolations of system cap-
ability for larger systems and other electrochemical couples could be
made,

B. BACKGROUND

The "dry tape" concept in its ultimate form involves the use of a
thin separator tape on which are coated the active components of an
electrochemical system (oxidant, reductant, electrolyte, electrode,
ete.). This tape can then be fed continuously or intermittently to
a set of current collectors that would activate the system, allowing
the electrochemical reactions to take place.

The major distinction between primary batteries and fuel cells is a
matter of system invariante. A primary cell is completely self-
contained; during operation, fuel and depolarizer are depleted while
waste reaction products accumulate. In a fuel cell, a more
invariant system is provided by continuous feeding of reactants and
withdrawal of products. This system is still not completely invariant,
however, since separators degrade, catalysts become poisoned, and
electrodes can flood. Furthermore, mass transport or diffusional
processes of ten 1limit the operation of both batteries and fuel cells,
although generally this problem is more severe with batteries than

it is with fuel cells.

The dry tape concept is designed to minimize, if not eliminate, some
of these common failings of both batteries and fuel cells, It is a
step towards more complete system invariance because not only the
fuel and oxidant but also the separator, electrodes, catalyst, and
electrolyte are fed unused into the system.




The major advantages visualized for such a system are, first,
reduction of concentration and-activation polarization through con-
tinuous feed of reactant and removal of products and the continuous
feed of fresh electrode surface. Second, such a system would allow
the use of known, high energy couples in high rate applications,
whereas 1in conventional battery systems these same couples would be
limited to low rate applications because of mass transport
limitations. A third advantage of the dry tape concept is that
with reserve-type materials, activation of components would occur
only as they are needed, permitting unlimited storage of the
unactivated portion of the tape.

The complete development of such a system would require a total ef-
fort that would not be justified until the feasibility ofthe basic
concept is demonstrated. PFor this reason, our major effort has been
to demonstrate the feasibility of the concept in a very elementary
form. Electrolyte incapsulation, catalysts, etc., were not considered
in this initial program. For demonstration purposes, the Ag202/Zn
couple was used for comparison with other high rate battery systems.
The program was not designed necessarily to optimize this particular
couple but rather to demonstrate its feasibility by determining the
operating parameters so that sound extrapolations to future system
capability can be made.




II. SUMMARY AND CONCLUSIONS

The feasibility of the "Dry Tape Battery" concept has been shown with
the Agz20-/KOH/Zn system. A cathode (Agz02) utilization of 85% was
attained at high current density (150 amp/ft2), while at lower current
densities cathode utilization approached 100%.

The cathode material, Ago0-, was applied in aqueous slurry with a binder
to a nonwoven fabric base to form a flexible tape. Discharge was ac-
complished by drawing the tape between the current collectors, one of
which also served as the zinc anode. Electrolyte was supplied by a
second tape, prewet, which contacted the coated tape prior to the current
collectors.

Investigation of the various operating parameters of the tape system
provided the following operating ranges:

up to 200 amp/ft®

Current Density
Tape Speed - 0.2 to 1.5 in./min
0.1 to 0.8 1b/in.Z

1

Electrode Contact Pressure
Electrolyte Feed Rate - 0.15 to 0.3 cec/min

Using the above operating ranges, a demonstration device was designed

and four such units were constructed. These units were delivered with

20 tape decks sufficient for several hours of operation. The demon-
stration units were not weight optimized but designed to show feasilibilty
of the concept for application to systems of theoretically high energy
density.

It is concluded that the "Dry Tape" concept is feasible and that it can
be used to improve the high-rate discharge characteristics of high
energy density couples. The power required to drive the tape system is
small compared to the output power. Relatively incompatible couples
can be used since it has been shown that activation can be accomplished
just prior to discharge.

f



ITI. PHASE IA. MECHANICAL ASPECTS

A. LABORATQORY TAPE EVALUATION DEVICE

A laboratory test device for evaluation of experimental tapes was
constructed before the formal start of the project. Figures 1

and 2 are photographs of this device as set up for "dual tape"
operation. In dual tape operation, an uncoated tape wetted with
electrolyte Jjoins the coated tape just before entering the current
collectors.

The dual tape is driven by a variable speed dc motor coupled to

a reducing gearbox and a torque-measuring 'device. Initially,
electrolyte was fed from a micrometer syringe (6), powered by a
Zero-Max variable speed drive (7), to a wicking pad (5) to dis tribute
the electrolyte onto the uncoated tape before it joins the coated
tape. After a satisfactory range of electrolyte feed rates was
determined by thils method, the uncoated tape was pre-wet with the
desired quantity of electrolyte to more closely simulate the operation
of the breadboard demonstration units.

Figures 1 and 2 show the laboratory tape evaluation device set up
for "dual-tape'", syringe-feed electrolyte operation. Thé dry Agz02
coated tape (1) is pulled over a platform and then passed between
stainless steel rollers (17), where it is pressed against the
previously wetted electrolyte/separator tape (13). The separator
tape is wetted as it passes over the electrolyte wicking pad (5).
The wetted tape (15) is drawn with the separator between the current
collectors (2 , the lower one of which is a zinc block.. The upper
current collector, a silver plate mounted on Plexiglas(ﬁl is

posi tioned by the guide (14) and screws (18). The discharged tape
(16) is drawn up on the tape-up spindle (3), which is driven through
the torque meter (12).

1. Cathode Collector

The cathode collector was originally a flat silver strip under which
the Agz0z-coated tape passed. It was found that performance of tapes
with rough coatings could be improved by use of a flexible grid of
expanded silver as the current collectors. With somewhat smoother
coatings, no noticeable improvement was found with expanded silver.
The area of the cathode collector (and the coated tape width) was
reduced to 0.765 in.2% (7/8 in. x 7/8 in.) to provide more reliable
operation with the "dual-tape" system. Thecollector weighed approx-
imately one ounce, and contact pressure was varied by the addition of
one-ounce welghts.
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As an alternative to the flat, sliding collector described above,

a roller collector was bullt and tested briefly. The purpose of
this was to reduce the force required to pull the tape. The roller
scollector consisted of four l/8-in. diameter gold-plated rollers
set in a holder. Preliminary tests indicated that the higher
current densities encountered at the roller contact areas were
tolerable.

2. Anode Collector

For this feaslbility study, the zinc anode materlial was not coated
on the opposite face of the tape but rather was present as a block
over which the activated tape was drawn. The zinc block also

served as the anode collector. The anode collector area was variled
from 0.328 in.2 to 0.985 in.2 by varying the collector length from
3/8 in. to 1 1/8 in. with a fixed width of 7/8 in. Expanded zinc
screen was also tried as the anode collector. The screen was
consumed 1in a relatively short period of operation and no
improvement 1in performance was noted.

5. Discharge Circuitry

The electrical load consisted of a resistance box with ten l-ohm
(25 W) resistors connected in serles and tapped at l-ohm steps.
These resistors and the circult resistance were measured with an
Electro Scientific Industries Universal Impedance Bridge. The l-ohm
resistors (connected) were found fo be within 2% of that value, and
the circult resistance was approximately 0.075 ohm (excluding
electrodes) of which 0.05 ohm could be attributed to the current
shunt. Electrical output was measured with a Varian G-22 Dual
Channel Recorder, which provided a continuous record of current and
voltage. TFull-scale voltage was 2 volts, and 1- and 2-amp

(full scale) shunts were generally used. Accuracy was 2% of full
scale and better. A chart speed of 2 in./min was used most often
to give a convenlent and accurate comparison with tape speed
(usually 1 in./min).

B. DESIGN AND CONSTRUCTION OF BREADBOARD DEMONSTRATION DEVICE

To demonstrate the feasibility of the dry tape concept, breadboard
hardware was designed and constructed. Because of time limitations,

certaln design considerations were initially agreed upon. These
were:

00




a. The unit was to be completely self-contained (drive, tape,
electrolyte, etc.).

b. A spring-wound mechanism (off-the-shelf) was to be used
for tape transpart.

¢c. A zinc block, over which the Ag20> tape 1is passed, was to
serve as the anode rather than using a zinc coating on the
tape.

d. Commercially available Ag>0- was to be used directly as
the cathode material rather than use of in situ electro-
lytic formation.

e. The configuration of the components in the breadborad units
was to occupy as small a volume and be as light as possible
consistent with using "off-the-shelf" parts wherever possible.

f. The breadboard demonstration device was to be capable of
continuous operation for at least 10 minutes, limited
only by the length of tape, even though the mechanical
system capacity would be much higher.

g. Although the ultimate goal was to use electrolyte encap-
sulation, for demonstration purposes this was not to be done.

As work progressed, a further constraint was put on the demonstration
device. It was felt that for the short periods of operation

required for demonstration, a weight and time saving and more reliable
operation could be obtained by using a dual-tape system in which

the electrolyte would be fed on a second tape saturated wilth

aqueous KOH. This greatly simplified the supplying of electrolyte.

1. Component Design and Testing

To check out possible mechanical designs for the breadboard
demonstration devices, it was necessary to construct a test stand

in which the mechanical features of all proposed components could be
determined individually and in conjunction with one another. This
test stand is shown in Figure 3. Based on their performance in

this test stand, the design of the various components was frozen for
imcorporation into the final devices.
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Figure 4. Prototype Demonstration Model of Dry Tape
Battery
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It 1s interesting to note that the electrical output of a tape
tested in this rig was ildentical with that obtained in the tape
evaluation device.

2. Breadboard Demonstration Device: Design and Fabrication

a. General Description of the Prototype Model

Basically, the breadboard unlts that were delivered consisted of
two major sections. The first contained a spring-wound drive
permanently mounted in a carrying case. Also mounted in this
case was a varilable load resistor, a voltmeter and an ammeter
for demonstration purposes.

The second section, which is called the "tape deck", is a self-
contained unit comprising the Ag-0> tape spool, electrolyte
saturated tape spool, tape sprocket dpive wheel, and current
collectors. Tape decks were built with sufficient tape for
approximately 25 minutes of continuous operation and can be
"plugged into" any drive unit.

A pictordal view of the breadboard unit is shown in Figure 4.
Figure 5 is a plan view o the tape deck in which the various
components are mounted.

The tape spools were preloaded with Ag202 and electrolyte-saturated
tape. Non-permeable leaders made of polyvinylchloride were
attached to the tapes and threaded through the operating path.

This preloading was done during the actual fabrication of the tape
deck, not just prior to the use of it. To start the unit, a tape
deck was plugged into the carrying case, over the spring-wound
motor section. The process of '"plugging in" automatically en-

gage the tape drive sprocket wheel and take-up spool shafts to the
spring motor shaft through self-sligning couplings.

Before actually starting the unit, the seal from the electrolyte

tape container had to be removed and the tape advanced manually until
the active coated tape was within the current collectors. Turning
the starting knob connected to the spring wound motor there put

the unit into operation.

Details of the individual components of both the drive unit and
the tape deck are discussed in the following section.

b. Detailed Component Description

(1) Spring-Wound Motor

12
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It was decided at the start of this project, that for the sake of
simplicity, a spring-wound motor would be used to drive the tape
system. Previous experiments had shown that the drive should be
all e to provide a shaft output of 10-12 in.-o0z of torque at 0.568
rpm. A further requirement was that the spring-wound motor
should run at least 20 minutes at constant speed after a complete
winding.

Because of the tight schedule for this work, it was necessary where-
ever possible to select off-the-shelf components rather than to
design them individually. For this reason, 1t was necessary to take
a welght penalty in obtaining a commercially available spring-wound
motor that would do the Job. It was found that the drive mechanism
of a 16 mm Keystone movie camera (No. A-7-3) with the following
specifications would be satisfactory with modification:

Output shaft speed: 60 rpm minimum

Output shaft torque: 20 1in.-1b when fully wound
Max. running time: 65 sec

Take-up spool shaft speed: 60 rpm minimum

Take-up spool shaft torque: approx. 0.5 in.-1b

Weight: 2.3 1b

The original speed control of the camera drive was insufficient to
reduce the output shaft speed to 0.568 rpm. For this reason an
escapement mechanism from a.chart drive clock was connected to the
camera drive in place of centrifugal regulator originally supplied.
The general layout of this modified spring-wound drlve is shown

in Figure 6. The transplahted escapement mechanism incorporated
into the original Keystone drive unit is in the left-hand portion
of Figure 6.

To rotate the tape deck shafts, a flexible coupling arm was mounted
on the take-up spool and tape drive shafts. When the tape deck was
"plugged in'", these flexible coupling arms engaged jawed couplings

on the tape deck shafts, providing a very satisfactory flexible
shaft connection.

(2) Tape Transfer Drive

The threaded tape within the tape deck was pulled along its operating

path between the current collectors by a drive wheel that has two
sets of sharp sprocket teeth as shown in Figure 7 and 8. Thus, the
tape was transfered by the progressive motion of the penetrating

14
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Figure 7. Tape Transfer Drive
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sprocket teeth. The optimum shape and dimensions of sprocket teeth
that would operate equally well on all combinations and thicknesses
of tapes and separators was not developed, but good traction
characteristics were obtalned wilth triangular-shaped 5-mil thick
stainless steel teeth.

Mounted on the driven end of the tape drive sprocket wheel shaft,
as shown in Figures 7 and 8, was a jawed coupling. When the tape
deck was plugged in, the flexlble arms on the spring motor drive
shafts engaged the Jawed couplings on the drive shafts. At a shaft
speed of 0.568 rpm, the tape was driven at a-linear rate of about

1 inch per minute.

(3) Take-Up Spool Drive

As shown in Figure 8, the take-up spool shaft was driven in the same
manner as the tape drive sprocket shaft. The major difference was
that only sufficlent torque was provided the take-up spool shaft to
overcome friction and wind the tape on the spool. Since the rate of
rotation of the take-up spool decreases as spent tape is wound on the
spool, a slip clutch was used in the spring motor between the tape
drive sprocket shaft and the tape-up spool shaft. The slip clutch
was a spring drive cable as shown in Figure 6, which merely slipped
on the pulleys because of the speed differentilal.

(4) Current Collectors

The current collectors, shown in Figure 9, were designed to fulfill
the following requirements:

(1) Even contact pressure over the moving tape and the
stationary anode.

(2) Knee-action to follow small unevennesses of the tape.
(3) Simple assembly and disassembly.

One of the two current collectors was made of fine silver and served
as the cathode collector. The other consisted of a zinc block and
served as both current collector and anode. Each of the elements was
of sandwich structure and consisted of the current collector metal
bonded to 1/4-in. thick urethane sponge, which in turn was bonded to a
Plexiglass backing plate. The total width of the electrode’

casing was selected to give approximately 6 oz/in.2 of pressure between
the current collectors.

18
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(5) Electrolyte Tape Container

Since in the dual tape system an electrolyte-saturated tape is

stored on a separate spool, 1t was necessary to seal this container in
some manner to prevent loss of electrolyte through evaporation. The
Sseal was made as shown 1n Figure 10. A soft neoprene rubber cylinder
of 12 durometer hardness was compressed into the 1lip opening of the
container against the nonpermeable section of the tape leader.

The seal was removed manually just prior to use of the tape deck.

To determine the effectiveness of thlis seal, one contailner was
sealed with 30% KOH-wetted tape on 19 November 1963, On 2 December
1963 this container was opened briefly and the tape was found to be
still wet. This container was resealed and put in storage. On

2 January 1964 the contailner was checked again (without opening)
and still appeared satisfactory; at no time was any "frosting"
noted on the seal or container.

20
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IV. PHASE IB., CHEMICAL ASPECTS

A. ELECTROCHEMICAL SYSTEM

The Agz202-7Zn system was used in this work to allow comparison
with a known battery system capable of high discharge rates. The
electrochemical equivalents for thls system are listed below. The
quantity of electrolyte requlred depends upon which reaction
predominates: 1la, 1lb, or 1lc.

Theoretical Energy
Density
~Watt-hr per 1b reactants

As Written Using 30% KOH

la) Ag202 + 27Zn + 2Hz0 = 2Zn(0H), + 2Ag 176 169
1b) Ag=202 + 2Zn + 2KOH = ©2KHZnO- + 2Ag 149 97
lc) Ag202 + 2Zn + UKOH = 2K2ZnOz + 2H20 + 2Ag 121 65

The theoretical energy density listed with each reaction assumes com-
plete discharge at 1.5 volts and was calculated using the following
electrochemlcal equivalents:

g{amp-hr

Ag202 2-305
7n 1.220
Reaction (la) Hx0 0.335
Reaction (1b) KOH 1.045
Reaction (1c) KOH 2.090

Fora number of reasons, the theoretical energy density cannot be
realized. Some zinc (5 to 10%) chemically dissolves in the electrolyte
and therefore 1s not used electrochemically. Internal resistance

of the cell and tle need for some excess electrolyte are among other
factors lowering the energy density obtained.

B. TAPE FABRICATION

Production of a sultable coated tape involved selection of a base
material, binder, and coating method for applying active divalent
silver oxide cathode material to the base in a form suitable for
discharge.

ee
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1. Anode

As mentioned previously, the anode consisted of a zinc block over
which the activated tape was drawn. A zinc-coated tape anode was
also made by dispersing zinc powder in a polyvinyl alcohol-water
solution and drawing the resulting slurry over a strip of Gelman
PVA separator with a Gardner knife. The coating was physically
satisfactory, showing good flexibility, uniformity, and rub-
resistance. This tape was not characterized electrochemically,
however.

2. Tape Base Materials

It was not intended to make an exhaustive study to select the
best basmaterial, but rather to find, as quickly as possible, a
satisfactory tape for use in the demonstration devices. This was

necessary to facilitate design of the tape drive and associated
hardware.

Nonwoven fabries of Nylon@ Dynel @), polypropylene, Dacron ®,

and a cellulosic material in thickness from 0.8 to 12 mils were
evaluated for useas atape base. The physical characteristics of
these nonwoven materials and other materials used are listed in
Table 1. The initial selection of tape base materials was based on
thickness, smoothness, flexibility, electrolyte wet-out and retention
characteristics, and wet strength. Inertness to the oxidizing
characteristics of the divalent silveroxide was also necessary. In
addition to these requirements, the tape base porosity had to be
such as to 1imit penetration of Ags0- during coating but allow
electrolyte conductivity during discharge.

3. Cathode Active Material

The cathode active material, divalent silver oxide (< 325 mesh)
analyzed 96 wt-% divalent oxide as purchased from the Ames Chemical
Works and was used without further treatment.

Since penetration of Ag202 through the base tape was undesirable, the

particle size distribution of the Ag=02 was important. This was
determined by electron microscopy at ouwr Dayton Laboratory.
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The Ag=20z powder was distributed in distilled water by ultrasonic
agitation and a drop of the mixture was placed on a plastic-covered
screen grid and allowed to dry. A series of 50 electron photo-
micrographs were taken of the particles. Each field was taken at
random using three plastic-covered screen grids and magnifications
from 1500X to 6000X.

The particles had three shapes: spherical, angular, and diamond.
The particle size distribution was taken from 666 particles counted
and measured. The longest dimension of the particle was used. The
sizes ranges from 0.3 micron to 4.0 microns. The particle size
distribution in O.5-micron increments is given in Table 2.
Table 2
PARTICLE SIZE RANGE OF DIVALENT SILVER OXIDE

Range, mlcrons Per Cent No. of Particles Counted

17
28
71
116
241
180

13

Thus, over 60% of the particles were in the 0.5- to 1l.5-micron
size range, considerably smaller than might be expected from
screening through 325 mesh size (44 microns).

ND\WHH
RND~NNONNO &M
OO N ENWU,m

This range of particle size explains the penetration of Ag=20z found
in coatings on certain nonwoven fabrics and the reduction in pene-
tration obtained by prewetting the fabric prior to coating as
discussed in the followling section.

4. Cathode Tape

Several methods of applying Ag20z to the tape base material were
explored. Impregnation, pressing,and coating appeared to be

feasible. Pressing of " the Ag20> powder onto the base tape produced

a tape with good discharge characteristics but handling and storage
stability were lacking. Also, production of large quantities of
continuous strips of tape would be inconvenient by this method.
Impregnation of the base tape with an aqueous dispersion of Agz202
with binder was unsatisfactory for several reasons. The roughness
and quantity of AgosDz in the resulting cathode tape depended on the
base material used. Some base materials, such as porous polyethylene,
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could not be impregnated at all. Also, impregnation would reau ire
the use of an additional separator tape. Dispersing Agz02 in a
solution with a binder and coating with the resulting slurry
appeared to offer the most flexibllity in applying Ag=0z2 to a wide
variety of base materials in varying controlled thicknesses.

Initial attempts to coat a dry fabric were satisfactory with small
strips, but prewetting of the fabric was found to be necessary in
coating larger pleces of material. The fabric (5 x 30 in.) to be
coated was saturated with distilled water on a glass plate. Excess
water was then drawn off with a Gardner knife ard the fabric was
clamped lengthwise in slight tension. Using thds technique the
fabric remained dimensionally stable during coating and the tendency
for Ago=Ds to penetrate the fabric was reduced. The Agz02 slurry
was then drawn over the fabric with the Gardner knife to produce
the desired coating thickness. The coating was air-dried in the
dark at room temperature.

A typical coating solution had the following composition;:

Parts by Weight

Ag202* 30.9

Gelvatol R 20-30 (poly- 5.6
vinylalcohol

Water (distilled) 63.7

*Ag 202, as used, analyzed 96% divalent silver oxide, which gives a
coating composition of 85 wt-% Agz02 on a dry basis.

The coating solution was made by dispersing the Agz202 ultrasonically
in water and adding the agueous solution of binder with stirring.
Satisfactory coatings were obtalned with Ag20z content of 85 wt-% to
as high as 92 wt-% %dry basis), depending on themature of the surface
being coated and the coating thickness desired.

Polyvinyl alcohol was selected as the binder (see Table 1) because
it gave satisfactory operation and allowed fixing the design of the
breadboard models at an early date. Other binders were tried with
less satisfactory results.
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5. Cathode Coating Analysis and Tape Stability

The physical characteristics of the coated cathode tapesare given in
Table 3. The makeup coating composition is given on a dry basis

for comparison with the value obtained by analysis of the finished
tape.

A considerable drop in Ag-02 1s apparent in many cases. This loss

of Ag-0- was reduced to a few .percent in the later tapes by the use
of forced air drying and protection of the coated tapes from light.
All efficiency calculations were based on the as made up value rather
than the measured percentage, making results conservative, rather
than optimistic.

The range of coating thicknesses with satisfactory physical and
discharge characteristics 1is shown in Figure 11 for Dynel and poly-
propylene base materials. The thickest satisfactory coatings

possessed an energy density of approximately 0.08 watt-hr/in. 2

(260 watt-hr/1b coating). It is possible that a significant improvement
could be made here since the apparent coating density was only in the
order of 1.5 g/cm® (density of Ag202 = 7 g/cm®). A more dense coating
would provide higher capacity without an increase in coating thickness.

Coated tapes were tested for storage stability under ambient conditions
and at 85°F and 88% relative humidity. Storage under ambient
conditions with exposure to light of polypropylene base tapes with
polyvinyl alcohol showed loss of Agz02 amounting to approximately

1 to 2% per month. Storage 8f the same type of tape at thé high
humidity and temperature gave losses of 30% in Ag20z2 in one month.

The same coating on nylon-base tape showed a very large drop (un-
analyzable) in Ag202 content and complete darkening of the underside
of the tape in two weeks storage at the high temperature and humidity.
Nylon 1s known to be less oxidation resistant then polypropylene.

A similar tape with Methocel binder was more stable under the same
conditions and showed only slight darkening on the underside of the
tape. Thus, it appears that storgge stability of the polypropylene
base tapes should be satisfactory and perhaps the best storage
stabllity would result from the use of Methocel binder.
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C. METHOD OF ACTIVATION

To activate the dry tape, the aqueous electrolyte must be intrpduced
Just before the tape enters the current collectors. Micro-
encapsulation offers an attractive solution to this problem but was
not used in the feasibility demonstration owing to time limitations.

Instead, an uncomated tape prewet with electrolyte was used in addition
to the coated tape. The prewet tape was stored in a contalner with

a "pop-out" seal. Activation is accomplished by bringing the two
tapes together just ahead of the current collectors. Operation in

the dynamic tape test equipment indicates that the tapes using
polyvinyl alcohol as a binder can be activated as close to the

current collectors as desired.

Other methods of activation were also considered. A single dry tape
was activated by drawing it over a wicking pad supplied with electro-
lyte by a metering pump. Incorporation of dry powdered KOH into the
coated tape was also tried; water was supplied to activate the tape.
Considerably longer actlvation times were necessary to allow
dissolution of KOH and diffusion to form electrolyte. It was hoped
that this could be done at the current collectors to take advantage
of the heat effect to improve output, but the increased activation
time seemed to obviate this possibility.

D. TAPE TEST PROCEDURE AND RESULTS

The main variables measured in the dynamic test device are summarized
below:

Variable Range of Typical Values

Current Density (discharge rate) 0.15-1.7 amp/in.® (1- to 10-ohm load)
Electrolyte Feed Rate 0.15-2 cc¢/min

Tape Speed 0.2-10 in./min

Tape Pulling Force 0.5-2 pounds '

Electrode Contact Pressure 1-9 ounces (0.08-0.75 1b/in.?2)

The test equipment has been described in Section IIIA. A number

of tape base materials and coating binders were subjected to pre-
liminary screening using a simple static test requiring only a square
inch of tape. The more promising combinations were tested further

in dynamic operation. The results are given in Table 4. The
preliminary dynamic test results are given in Appendix I.-
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The tests were carried out primarily to determine the general
characteristics of a tape system and to obtain an operable tape for
use in the feasibility demonstration. Since recurrent modifications
on the test equipment and coating methods were made, direct comparison
of all test results is not possible. For example, the furrent
collectors were decreased in width to 7/8 in. and redesigned to reduce
alignment problems in the "dual-tape" system.

The test procedure consisted of initial determination of the open

circuit voltage followed by discharge at increasing rates to determine

the maximum discharge rate obtainable at a fixed tape speed. A tape

speed of 1 inch per minute was the maximum used in mest of the tests.

If a steady discharge was maintained for the time required to pass

twice the collector length, the discharge rate was increased further
(usually doubled) by decreasing the load resistante. While this
discharge time probably did not bring the tape to steady-state conditions,
it did provide for a complete change of depolarizer at the collectors.

Later tests were run on full lengths (approximately 25 in.) of tape
at a fixed discharge rate and with intermittent operation.

While complete detailed experiments have not been conducted to
provide mathematical relations for the variables involved, a number
of general correlations and observations have been made. Assuming

a fixed tape speed with excess electrolyte supplied, the maximum
discharge rate maintainable depends primarily on the percentage of
Ag202 in the coating and the type of material used for the separator
and coating cupport. Loss of output voltage was most often due to
penetration and deposition of silver on the zinc collector. As the
percentage of Ag20z in the coating decreased with the same type of
tape, lower output voltages were obtained.

Coating uniformity and smoothness must be such that the collector
contacts essentially all the coated area beneath it. With a screen
or roller collector, more roughness could be tolerated. Increasing
pressure on the current collectors increased output only momentariily
when good contact was already being made. A force of 2 to 5 ounces
was generally sufficient for good contact with smooth tape. Most
often, a weight of 8 ounces was used to give good contact with a wide
range of tapes. When there was excess Ag-0z on the tape for the
conditions used, slowing oOr stopping the tape usually produced a small
rise in output, at least temporarily. This is believed due to better
contact with ard improved conductivity of the discharging coating.
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The use of very thin (1-3 mil) permeable nonwoven materials allowed
high discharge rates to be attained, but fallure due to zinc foulilng
was rapid in many cases. Materials of low permeability eliminated

the fouling but also limited discharge severely. The best compromise
was the use of a thick (10 mil), hx%hly permeable separator/electro-
lyte feed tape with a thin (1-3 mil) coated tape. Theivuse 6f
hydroxymethylcellulose as a binder seemed to 1limit migration of silver
and degradation of Ag20z2 during coating. However, the resulting
coating was slow to wet with electrolyte, requiring a longer contact
length with electrolyte tape or a slower tape speed.

The test results for the most similar tapes are compared in Table 5.
The last two lines of the table give the energy density in watt-

hr/1b for the dry Ag202 coated tape above, and for the tape system
including the separator and 1.1 times the theoretical amounts of

37% KOH and zinc. The energy densities calculated with 1.1 times the
theoretical amount of zinc and the el ectrolyte actually supplied range
from 20 to 40 watt-hr/lb. As can be seen the cathode utilizétion is
high, even at current densities near 1 amp/in.2 although a drop off

at high current density 1is apparent.

The relationship between the maximum output voltage and current density
obtained from various tapes 1is shown in Figure 12. The anode area
varied from 0.328 in.2 to 0.985 in.2. 1In all cases, even though the
anode area was changed, the voltage-current density relationship
remained constant.

It should be noted that the open circuit voltage was approximately 1.6
to 1.65 volts, considerably below the 1.86 open circuit potential

of primary silver-zinc batteries. This has recently been shown to be
caused, at least in part, by the silver current collector, where
reaction of divalent silver oxide with metallic silver can take place

to form the lower potential monovalent oxide. Substitution of an

inert (gold-plated collector resulted in an open circuit voltage of the
expected value. At a current density of 1 amp/in.2, the output

voltage was about 1.4 volts, giving a voltage drop due to internal
resistance of about 0.1 volt.

The utilization of silver peroxide as a function of current density
is shown in Figure 13, which represents the best results obtained.
At a current density of 1 amp/in.2, a cathode utilization of 85% was
obtained; this was calculated on the "as-coated" weight of silver
peroxide. Again, the most critical requirements for obtaining

high cathode utilization appear to be 1) a smpoth coating with a
minimum of binder present and (2) matching tape speed to drain rate.
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The current densitiles as functions of the tape speed for various

tape bases and coating thicknesses are shown in Figures 14 to 16.
For any coating thickness and tape speed there is a theoretical
maximum current that can be drawn from the system. This is shown by
the stwraight line portion of the plots and is labeled 100% cathode
utilization. The actual test results are shown by the curved lines.
The deviation of the curved line from the 100% utilization line gives
an indication of the current efficiency at any tape speed. The
current densities plotted on the vertical scales are the maximum ones
obtained with a steady voltage output.

Two interesting points are noted in Figure 16. First, 1in the 3- to 4
mil coatings, the actual current densities do not fall off as
drastically from the 100% utilization line as they did with the 3-

to 4- mil coatings iIn Figure 15. This 1is probably due to a non-
uniformity in the coatlng technique.

Secondly, the curves for the 5- to 6- mil coatings show a drastic
leveling off when compared with the 100% utilization line. Several
explanations are possible. This may again be due to a nonuniformity
in the coatling technique or it could mean that a limiting thickness
of coating was reached beyond which more active materials could not
be efficiently utilized at high speeds.
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V. PHASE II-PROOF, DEMONSTRATION, AND DELIVERY

The feasibility of the dry tape battery concept was demonstrated on
the laboratory test device and with the breadboard demonstration units
which were delivered. In fulfillment of the contract, 4 breadboard
demonstration units and 16 spare tape decks, each loaded with
approximately 25 minutes of tape, were delivered. Filgure 17 1s a
photograph of one of the final devices.

A. DRIVE TESTS

Prior to delivery, each of the 4 breadboard demonstration unit drives
were tested with and wlthout tapes. To prove satisfactory performance
with tapes, a total of 20 tape decks were tested in the 4 drives.

Each drive unit was given the followlng tests:

1. Without the escapement mechanism assembled, the spring motor was
wound 22 times and allowed to.run down completely. The purpose
of this check was to determine whether each spring motor had the
required energy storage capacity.

2. Also without the escapement mechanism, the spring motor was wound
1/2 to 1 turn of the key. The motor was required to operate with
this minimum number of turns to show that the frictional forces
were minimal.

3. One complete drive was wound the full 22 turns of the. key and its
rundown period was timed at 144 minutes, which was well in excess
of the 25-minute tape deck operation required.

4. With the escapement mechanism assembled, the Spring motors were
tested with 4 turns of the key. The complete motor was required
to operate with this minimum number of turns to show that
frictional forces were minimal.

B. TAPE TESTS

All 20 tape decks were tested with approximately 25 inches (25 minutes
at 1 inch per minute) of active tape. During the operation of each
tape deck the current-voltage characteristics were measured and
recorded. Figure 18 shows the range of values obtained during these
tests.

Following this test, each tape deck was reloaded and the current
collectors were cleaned. The electrolyte tape containers were then
sealed and the tape decks packaged and shipped.
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Figure 17.

Final Demonstration Model Dry Tape Battery
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VOLTAGE
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Tape No. (See Table 3)

- 0.8% 2l

Figure 18.
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Tape Decks.
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APPENDIX IT

REPORT ON WORK DONE FROM

19 DECEMBER 1963 TO 23 JANUARY 1964
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APPENDIX TII

REPORT ON WORK DONE FROM
19 DECEMBER 1963 TO 23 JANUARY 1964

A. INTRODUCTION

Our future plans in this work will comprise continued development
of the system into a more applicable end device as well as further
research into exotic high energy couples for incorporation into the

electrode structure. Among the specific tasks to be accomplished
are to:

1. Devise methods of incorporating high energy anodes and cathodes
into tape systems,

2. Investigate various methods of encapsulating electrolyte,

%, Combine the highest possible energy couple into the one tape
configuration.

4, Design a tape conversion device capable of supplyling its own
power for unattended operation, and

5, Work out methods of supplying multiple cell voltages for the
dry tape battery.

Progress on these tasks during the period 19 December 1963 to 23
January 1964 is discussed in this report.

B. HIGH ENERGY ANODES AND CATHODES

1. Analysis of Projected Capabilities

One particular example of high energy density system is the magnesium/
meta-dinitrobenzene couple. This seems to be ideally sulted to our
purposes.since, in a primary battery configuration, 1ts output is
limited by mass transport or diffusion rather than by thermodynamics.
In present primary battery usage, it is a high energy density couple,
capable only of low drain rates. Applylng this couple to a tape

could considerably improve its drain capabilities since the diffusional
limitation is overcome by mechanically feeding the reactants to the
reaction sites.

The magnesium/meta-dinitrobenzene couple has a theoretical energy density
of 766 watt hours per pound of reactants, a figure which includes the

8 moles of water required in the reduction of each mole of meta-dini-
trobenzene.
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Figures 19(a)and (b).show the results of a system analysis based on
the magnesium/meta-dinitrobenzene couple applied to the’ tape. The
graphs show the total system welght in ounces as a function of mission
time for individual periods of operatlon of 10, 100, 1,000, and 10,000
hours and for 5 years. For each case the tape feed rate 1s one inch
per minute and the current output 1s 5 amperes for the entire mission
time. In each case the mechanical components for the entire system
are scaled up versions of those used for the 10-how mission.

Consldering the 10-, 100-, and 100-hour mission times [Fig. 19(a)],
it 1s seen that:

1. The electrolyte capsule weight goes from 22 to 14 to 7.5 per cent
of the total weight.

2. The weight of the case goes from 19 to 13 to 13 per cent of the
total welght.

3. The weight of the drive goes from 36 to 15 to 2.5 per cent of
the total welght.

b, The reels are constant at 3% for the 10-hour and 100-hour levels

but rise to 6 per cent of the total welght for the 1000-hour
mission,

5. The weilght of the electrolyte rises from 6 to 17 to 22 per cent
of the total weight. Here it should be noted that the dotted
line represents the dividing point between the water required for
the reaction of meta-dinitrobenzene and that of the electrolyte.
It can be seen that the welght of the water of reaction is larger
that that assumed for electrolyte. This proportionality is also

carried but not too clearly seen in the 10- and 100-hour mission
times.

6. The weight of the coated tape as a fraction of the total system
weight rose from 14 to 38 to 49 per cent.

For the 10-hour mission the total energy density is calculated to be

67 watt-hours per pound; for the 100-hour mission it is 185 watt-hours
per pound; for the 1000-hour mission 1t is 235 watt-hours per pound.
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The same analysis is carried through in Fig. 19(b) for mission times
of 10,000 hours and 5 years. Here, the point of maximum return has
apparently been reached since the fractional welights of the active
components do not increase and there is only a corresponding token
rise in energy density.

2. High Energy Anode Development

To incorporate aluminum or magnesium into a tape anode,the following
three structural forms are considered possible: (1) solid, as in
foil form; (2) porous, as in pressed powders or molded electrodes;
and (3) high area solid, as obtained from flame sprayed metals.
Accordingly, steps were taken to obtain samples of each type for
performance testing under various current densities. The foll or
sheet stock was purchased directly from the metal manufacturers and,
in the case of Mg, included several alloys. The flame spraying was
accomplished by a local vendor on tape backing materials of several
different compositions. The porous powder types will be manufactured
in the laboratory using a punch and die arrangement designed for this
purpose. The latter is shown in Fig. 20.

The testing phase is scheduled to follow, and electrical apparatus. and
Plexiglas blocks are being readied as required. The initial tests
will include measurement of the degree of polarization with 1lncreasing
current density and the effect of different electrolytes.

C. ELECTROLYTE INCAPSULATION

Various methods of electrolyte incapsulation are being considered to
supply electrolyte as needed for discharge of the tape battery in a
storable form compatible with stop-start operation. To achleve a high
payload of electrolyte, the container wall must be thin. The smaller
the capsule size, the thinner the capsule wall must be to provide the
same percentage payload and, consequently, the more impermeable the
wall material must be. For example, with a 5-mieron capsule, for 50%
volume 1nitial payload, the wall thickness must be less than 1 micron.
With an assumed requirement of a minimum payload of 60% after three
years storage, micro-size capsules are eliminated as a possibility with
the present state-of-the-art, at least for incapsulation of aqueous
phases. In fact, it appears that microcapsules will be promising only
if the anode material is at least partially used as an incapsulant.
In this way, a much greater capsule wall thickness could be used
without increasing the weight penalty.
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A very large macro-capsule can easily meet the above payload-storage
requirements. For example, a 500-cc polyethylene bottle with

40-mm wall will provide a 95% + payload with a loss of only 1/4%
per year. However, this means of electrolyte storage would require
additional mechanisms to dispense electrolyte at the required rate to
the desired location. Aside from the additional complexity, there

1s a definite minimum operation time below which this method suffers
a weight penalty compared to micro-or-macro-capsules.

Our analysis indicates that for one set of assumed conditions, this
minimum operation time is of the order of several hundred hours.
While this minimum will vary with the conditions, a macro-incapsul-
ation of dimensions suitable for supply with or on tape obvieously
offers the most promising approach.With this method, as with
microcapsules, optimization is essentially independent of tape time
and it appears possible to fulfill the payload and storage
requirements; this is not so with microcapsules. The methods of
incapsulation are illustrated along with a summary of the results

of our paper analysis in terms of capsule weight versus tape time

in Figure 21 . Microincapsulation appearsto offer a weight
advantage over macrocapsules as shown in Figure 21 for all periods

of tape time. This is because loss of electrolyte payload is not
taken into account. When loss of electrolyte due to capsule wall
permeability is included, all three curves in Figure 21 will show
a curvature upward, the rise being steepest formicrolncapsulation.

D. MULTIPLE CELL VOLTAGE

During the next phase of the development of a tape battery using high
energy couples, operation at high voltage (multicell voltage)

will be demonstrated. The following are three general approaches

to providing a system with higher voltages, which have been, and

will continue to be, considered:

(1) The first employs a voltage conversion device external to the
electrochemical system. While this method remains a distinct
possibility, it 1s felt that the necessary high conwersion
efficiency of such a device would require it to be designed
around a constant load. It would presumably be operable under
a varying load, but the efficiency would suffer.
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(2) The second method would be to use bi-polar or duplex
electrodes. While this method offers unique advantages,
its major application appeas to be for low current devices
since any duplexing of tapes would necessarily increase the
tape thickness and decrease its flexlbility to such an extent
that operation between the current collectors might suffer.
For example, for a bi-polar tape system operating at 5 amperes' and
28 volts, the tape thickness would be approximately "1/4 inch.
This would be a rather inflexible tape. However, there is the
possibility of storing individual tapes on separate reels
and duplexing them just before they entér the current collectors.

(3) The third method of providing multiple cell voltages 1s perhaps
the most obvious one: connecting individual tape deck modules
in series. A schematic drawing of a single module 1is seen in
Fig. 22 while a 4-cell stack is shown in Fig. 23. Each stack
of cells would be powered by a parasitic electrical drive
mounted on the end plate of the stack. In the next phase of
the development work on the tape concept this stacking principle
will be used for providing multiple cell voltages.

E. CONVERSION DEVICE DEVELOPMENT

During this period, all of the work relating to the mechanical
design of the conversion device covered the selection of the type .
of electric drive to e used during the next phase of development.
In line with the objectives of attaining maximum watt-hours per
pound of weight, and having an electric drive capable of variabte
speed operation, the following different types of electric drives
were studied: .

1. A 12-VDC permanent magnet motor with gear train. Rheostat 1n
armature circuit to vary speed.

2. A shunt-wound dc motor with gear train; Rheostat in field
circult to vary speed.

3. A 3-vDC, constant-speed, permanent magnet motor with gear train;
a variable speed transmission to vary speed.

4, A stepping motor or solenoid with electronic pulser; electronic
pulser designed to vary pulse interval to vary speed.

5. A solenoid-wound spring motor; an adjustable escapement mechanism
to vary speed.
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After evaluating various factors, the 3-VDC, constant speed motor
with gear train and varilable speed transmission was selected. The
advantages of this type of drive for this application are as follows:

1. Operating voltage is low. Since the drive must operate
parasitically from the voltage generated by the battery tape,
low operating voltage will obviate the necessity of incorporating
a D€ voltage converter.

2. The output torque per pound of weight and per unit of power
consumption 1s high.

5. The present state of the art in the design of lightweilght,
efficient, small, DC electric motors 1s very good, with
advances being made continually.

4, A simple, lighweight, variable-speed transmission is feasible.

In the course of evaluating the above during this perilod, ingquirdies
were sent to approximately 20 different companies who make small
electric motors, in search of a small, lightweight, and efficient
DC permanent magnet motor.

A motor with gear train capable of 30 to 40 ounce-inches at an
output shaft speed of 1 rpm, requiring a input wattage of less than
0.20, and weighing less than 8 ounces was sought. Such a motor
would be capable of driving approximately three tape cells.

After several weeks of search a motor with these requirements was
offered by the Glavinini Controls Corporation. Accordingly, the
following two motors were ordered:

Motor No. 1 Motor No. 2
Design Voltage, VDC 3 12
Output Shaft Speed, rpm 1 rpm 1
Input, Milliwatts 0.21 0.21
Output Shaft Torque, oz-in. 30 30
Weight, oz. 8 1/2 8 1/2

The 12-VDC motor was ordered so that experiments could be conducted
on & rheostat control of speed.
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APPENDIX ITI

NEW TECHNOLOGY

The reportable ltems considered to have been developed during the
term of the contract are as follows:

1. Silver peroxide/zinc tape cell using silver peroxide adhered
to a tape base by a polyvinyl alcohol binder and a second tape
carrying the KOH electrolyte, passed between an inert cathodic
current collector and a consumable zinc anode during operation

of the cell. This development is described in the present Final
Report. It is considered an invention, and a patent application

has been prepared and filed on this development: Bernard A.
Gruber et al, SN 336,557, filed January 8, 1961, for Dry Tape
Fyel Cell. This case has been reported to NASA with a

Confirmatory License to the Government, and a request for waiver

of patent title rights.

2. Tape cell with parasitic drive, electrolyte encapsulated for

long-term storage, armd tape carrying anode and cathode reaction

components. This development 1s described in the present

Final Report to the extent that work has been done up to the end
of the contract period. It is considered novel technology, but

determination of the patentable status of this work will have

to await further progress of the development, scheduled to take

place under a subsequent contract.
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